Dirk van den Heuvel | Embedded systems
architect

TOPIC

2
Abstract

3

Introduction

4

To Al or Not to Al: Not a trivial question

5

WISH: Al'in a glance

7

Enabling Al on the edge

9
Al deployment flow

11
Al @ work

12

Conclusion: Is Al a fit on the edge?

13
About TOPIC Embedded Systems

INTRODUCTION

Artificial Intelligence is often presented as the magic wand that solves our problems
seamlessly. However, there is no such thing as a free lunch. When bringing the benefits of
Al to industrial challenges, you need to consider the preconditions to facilitate Al-based
algorithm processing. As an example, many industrial applications cannot rely on the
availability of large remote data centres with infinite computational power. Therefore, it
is important that the deployment of Al algorithms in regular industrial settings meet
typical industrial requirements like limited processing- and electrical power, fast real-time
response, and a suitable mechanical fit. Also, safety, reliability, robustness, serviceability,
and other requirements must be considered. This often also implies that the latest silicon
technologies need to find their way into environments where the typically implementation
choice is driven by proven technology.

In this paper TOPICs experiences and insights are shared with deployment of Al solutions in
real-world applications, addressing hardware, software, and firmware aspects. The pre-
conditions and consequences of Al based solution are discussed from a deployment
perspective and cover the connectivity, processing platforms, board design consequences as
well as system integration.

As a strong player in the domain of medical and industrial applications in Europe and North
America, TOPIC has been involved with Al applications for nearly a decade. It is a natural and
welcome addition to the mathematical algorithm developments on which many of the
realized projects by TOPIC are based. When capturing phenomena in formulas becomes too
complicated, artificial intelligence can often offer a solution. However, an overlooked aspect
is the fact that Al algorithms need to be trained and that training is one of the key success
factors of an algorithm, but can be costly in terms of time and budget.

The distinct difference between mathematical and Al algorithm design is the evolution of the
quality of the produced result. In case of mathematical designs, there is no evolution: it is
what it is. You may come with different insights, but you need to enhance the model to
incorporate this. In case of an Al algorithm, you determine and tune the basic algorithm to
the specific application. Then you start training with available data. The quality of the
algorithm is determined by the set of unique applied examples and weighted results. Over
time, your algorithm becomes better trained and will keep on advancing in quality as long as
you feedback data to the training model and update the deployment model. Therefore, a
decision to choose Al over mathematical models is a balance between spent effort, quality

objectives and complexity of the problem.

TO Al OR NOT TO Al: NOT A TRIVIAL QUESTION

A nice trade-off example was presented by a customer of ours. They are a leading high-quality
mattrasses manufacturer and can configure pocket spring mattrasses with variable tension
springs to optimize the sleeping comfort of the customers. It sounded like a typical Al
problem: not a single person is the same, there are a lot of different springs in the mattress
with many input parameters as well as possible outcomes. A special calibration mattrass was
designed to characterize a person. Apart from technicalities reading each springs tension
when measuring a person, the algorithm training was taking place with a too limited initial
test set. When exploring the Al algorithm characteristics, the conclusion was, that you need
over 1000 unique test persons to characterize the calibration data set. You also need the same
amount of mattrasses produced to validate if the selected mattrass was the right mattrass for
that customer. The cost of the training turned out to be very expensive. In the meantime, a
TOPIC mathematician figured out a way to characterize the calibration mattrass in a different,
purely mathematical way. The years of experience of factory personnel with mattrasses design
and production resulted in a promising solution with a feasible result. But it is not Al and
therefore the marketing value was too low. A different approach was pursuit by the customer.

-
-
math. domain Aldomain .+~
—_——
’
-
J”
-
/”’
>
= mathematical models -~
© -
o »
s
-
4—‘—
o
PR
0,7
AR -
—-—"
-
4
-
-
-
’
z

deployment time
Figure 1: Mathematic modelling versus Al-based application development

One of TOPIC's first Al applications was WISH (Workflow Information
System for Hospitals). The goal is to predict the end time of routine
procedures executed in operation theaters (OR), like knee and cataract
surgery. To enable this, smart sensors are distributed over the OR,
sensing e.g. mains current fluctuations due to the use of specific
equipment and use of a smart instrument table, sensing change in
weight and shadows on the table when changing instruments. The
algorithm was trained to recognize patterns in the readings and
correlate these to the expected pattern. From this a prediction of the
end time of the procedure can be established. As a result, the logistics
around the OR can be optimized, reducing uncertainty in patient
preparation and reduce operational cost as the theater is used more
effectively. The Al algorithm is running on a dedicated x86 based server
with GPU support used for training, deployment, and execution. The
server can be hosted in the cloud or locally in the hospital. The quality
of the prediction is clearly influenced by the number of procedures
executed.The outcome of the end time predictions can also trigger
ethical questions. How do you deal with surgeons who structurally need
more time to complete a procedure? Is that time spent on a specific part
of the procedure? Does the quality of the procedure correlate to the
time spent on the procedure? This kind of data becomes available and
quantifiable. The example also shows that algorithms for recognizing
patterns are not just mathematical, but more organic: there is not an
absolute right-or-wrong answer.

Figure 2, on the next page, illustrates a brief summary of a typical Al
development flow illustrating the different steps that were made when
implementing the WISH concept. The five steps are iterative and passed
multiple times. The first step is to gather the required data and get them
into a form that you can feed to your algorithm. We learned that the
mains currents needs sampling with significantly high dynamic range to
identify the usage of specific devices. To distinguish the usage of a
plasma knife or switching on a LED is quite a challenge. Here, the real
learning takes place.

Also, the discovery that a solar panel can act as a carrier plate as well as a sensor on the
instrument table was quite rewarding. Apart from this, many more parameters are being
collected as input for the algorithm. The implementation of the algorithm is making use of an
existing suitable model architecture and specific domain expertise from the field to tune the
model. Using sensor readings, either artificially obtained or acquired from the field, are then
used to train the model. After this initial training, the model is then deployed in the real
application.

In the WISH context, the end-time prediction model was deployed on the same server where
the training was taking place. The Al model used to detect objects on the instrument table
was deployed on an edge device in the table itself, partially relying on sensor data supplied
by the server. It was a form of “training-on-the-job”, where feedback was immediately
looped-back to the training module, enhancing the algorithm as it goes. Every now and then
you need to revisit the model architecture itself for an optimization task. However, this
implies that you must retrain the model again with all the stored examples.

sensor development:
- operating room
- instrument table

domain
expertise

Data preparation

Model building

Detecti ems w Building mod

server target:
Industrial PC

embedded target:
Smart Instrument Table

collection &
qualification

Figure 2: Typical Al implementation flow '

ENABLING Al ON THE EDGE

With the advances of silicon technology, you see dedicated
devices being released that allow deployment of Al algorithms
also on the edge without involvement of connected servers. The
dedicated neural network infrastructure on these devices is
optimized to meet the specific needs for Al algorithms. You
always see a controlling processor next to the neural network
processing unit to manage the applied data and algorithmic
steps. This can be an external processor or that the accelerator is
part of an SOC. The latter is highly preferred as edge devices
require to be relatively small and power efficient.

Next to the physical neural network implementation, there is
always an eco-system with a processor platform to map trained
models onto the neural network. As a premier partner of AMD
Embedded, formerly known as Xilinx, TOPIC saw the first
instantiation of a neural network appear as a convolutional
neural network (CNN) with limited performance, limited
complexity and limited data resolution on FPGA fabric. However,
this enabled already quite a few interesting applications.
Especially, vision applications for recognizing multiple objects
simultaneously at high speeds were key indicators that Al was
becoming mature as a technology and suitable for use in real
application on the edge.

On FPGA devices, the neural networks were denoted as DPU,
Deep-learning Processing Units. Google/Corel introduced the
TPU (Tensor Processing Unit), followed by many more attempts
to bring Al algorithms from the cloud to the edge. As an example,
TOPIC is at this moment exploring a newly released Al-focused
SOC by SiMa.ai.

Training & Deployment

cloud/server solutions

edge implementations

Coral 8

< NVIDIA.

Deployment only

Sygt
Gf)ra n ‘Chj
~ ‘os
2016/2017 (so, -

Figure 3: Al edge deployment evolution

Given the amount of data required to execute an Al algorithm, the move from the cloud to the
edge for deployment is very useful to reduce the amount of communication traffic. A project
TOPIC executed for a leading technology company, involved 4x 4K MIPI camera’s observing
rooms in a 360 angle. This leads to an uncompressed video pixel stream of around 50Gbps.
The application was realized using system-on-chip (SOC) technology, incorporating FPGA
fabric to interface real-time with the 4 MIPI video streams and detect/isolate regions-of-
interest (ROI) in the derived images. The regions-of-interest were streamed by the
incorporated multi-core processor into the Al engine. The Al engine was realized as part of
the FPGA fabric. The output of the Al engine was then communicated with a cloud server via a
WiFi connection. A typical characteristic of such an edge device is that it is limited in available
size, available power and communication bandwidth. The solution uses an AMD Zynq
Ultrascale+ SOC and was suitable for demonstrating the feasibility of functionality within the
given power and space budget.

A

Al DEPLOYMENT FLOW

A dominating factor in deploying a trained model on a target device is the tool flow you need to
translate or compile the model to the neural network on the device. It is very common to train
your Al model using double precision floating point accuracy. However, typical edge
implementations are using integer-based processing, even limited to 4 bits. Translating a
trained Al model from floats into 4 bits integer numbers gives loss of quality. However, all
neural network vendors provide tool flows that support engineers in this decimation process
and limit the loss of quality as much as possible with quantified numbers. A typical flow, based
on AMD Vitis Al, is illustrated in figure 4, highlighting key optimization steps. Other providers of
neural network solutions provide similar implementation flows.

.
(] .
{] [}
o L
L]] . (]
User Application . .
L .
Neural Network Quantization Neural Netwaork
(FP32) (Fewer bits per parameters) (INT8)
Al Quantizer

Model Formats OPyTorch T Tensorflow () ONNX
L]
/ 'y .
L L] L L]
Netural Network Models. Vitis Al Model Zoo Models {]
I—‘ L]] . ']
/ L] L

L]
| Ay "‘""“”’ AL ‘”""“Z" Dense Neural Network Pruning Pruned Neural Network
- FPa2) (FP32)

Vitis Al Integrated e (i} (Fewer bits per parameters)

Development Environment g8
| AM,, ‘ Al Optimizer
~.
| Vitis Al Runtime. pﬂm\ ‘

o~ » 100101010010

110010101011

o 001001010100

o e —— . Totai0r01
. 110010010101

001011001010

Lo o o _»

| Quantizer DPU Instructions

Al Compiler

Figure 4: Example Al deployment flow

First, you match the developed Al model with a model from the Model Zoo. These are pre-
defined networks with specific characteristics. But you can always configure your own based
on your experience. Using that input, the trained model is matched with the selected model.
In the second step, you need to match the trained model data representation with the
implemented neural network data format.

Typically, the tooling supports this in three steps:

o First, the optimizer tries to reduce the neural network complexity. This is referred to as
pruning. This will cost accuracy, but as a programmer, you can determine if the loss is
acceptable.

e Secondly, the data representation is reduced to whatever is needed. Most common at this
moment is a reduction to 8-bit integers. There are quite some developments towards
higher resolutions on the short term. In this step, also interaction with the engineer is
required to monitor and steer the accuracy loss.

e The last step is the actual compiling of the pruned and quantified model on the targeted
network.

This network needs to be driven by data, controlled by the connected processor. A profiler is
then in place to help analyze the execution pipeline over time. You can also have support to
time the data production and consumption side to optimize performance further. After this
step you have a deployed Al engine that you can integrate in your (software) application
running bare-metal, Linux or a qualified RTOS.

Not just the deployment flow keeps advancing. With the ever-decreasing
silicon technology geometries, now even at 3 nm, logic densities keep on
increasing and enable cost-effective, relatively low-power
programmable neural network architectures on silicon devices as part of
system-on-chips. This also enables neural network nodes with higher
precision. Like all systems around, the complexity of a neural node, the
number of neural nodes and clock rate of the network are highly
determining the performance figures of the neural network. For this
reason, you see various flavors of neural network processors appearing,
addressing a variety of applications around. This gives way to many
more applications that were previously not feasible. An interesting
domain form agricultural applications. Al has many advantages here
over traditional programming methods as a property of nature is, that
nothing is the same. As an example, one of TOPICs customers requires to
inspect thousands of eggs every day for cracks using optical inspection.
If an egg with a crack is detected, you have limited time to remove an
egg with a crack before it is being further processed. The eggs are
inspected with more than 10 high-resolution/high-speed cameras and
multiple times per egg. An Al algorithm processes snapshots of a
particular egg from multiple angles in a limited amount of time. This
sounds like a trivial exercise, but the amount of data to process is
massive, the Al algorithm complex, the available space in the machine
limited and the optical path complicated. However, Al is here the right
way to go, superior to the previous sound-based crack detection
method. The sheer volume of eggs passing the system is a great way for
training and improving the algorithm with every egg passing the
algorithm.

This is an example that is representative for many agricultural sorting
and/or processing problems. TOPIC has been involved with quite a few
projects in this domain where Al was driving the solution. This involves
cutting leaves from plants in greenhouses to re-planting seedings into
larger pots. But many more applications can be identified. Especially
when you can combine this with autonomous moving robots (AMR), a
solution that can be resolved perfectly using a single system-on-chip
(SOC), when you choose the right one.

Like all technology developments, Al is not the holy grail. Al forms a part of the solution.
However, Al has become a mature technology over a reasonably short period of time, also as an
edge deployment solution. The examples mentioned in this paper illustrate this clearly. They
demonstrate successful deployment of Al based solutions on the edge as a fusion of sensor data
acquisition, pre-processing, neural network execution and output control.

Care must be taken that it is not suitable for all problems: complexity and cost for training need
to be accounted for. Heterogeneous processing solutions are required as edge solutions,
embedding the Al implementation in end-application. With the increasing amount of silicon
platform solutions, the question is not if an Al is a fit, but which configuration is the best fit. Also
the tools supporting Al deployment are maturing rapidly, supporting the process of bringing Al
to the edge.

As such, the conclusion is that Al is a fit as reliable implementation method embedded devices.
Feel free to share thoughts, ideas, questions and others remarks by contacting us.

ABOUT TOPIC EMBEDDED SYSTEMS

“We make the world a little better, healthier and smarter every day”. Our mission statement
reflects exactly what we do: developing innovative systems for our customers. The way we do
that, is by combining our customers domain specific know-how with our expertise in
hardware and software development. This results in the most optimal product for our
customers. TOPIC has a strong background of more than 28 years in developing systems,
which can contain embedded-, application- and cloud software, FPGA code and PCB designs.
We help customers in different domains such as medical, imaging, machine control & safety.
With over 130 employees, we are a strong and established company with our headquarters in
Best, the Netherlands. TOPIC has an I1SO13485 (medical) certified Quality Management System
and adopted the Agile way-of-working for optimal interaction with the customer.

Premier Partnership with AMD | TOPIC is one of the few AMD Premier Adaptive Computing

Partners in the world. Our partnership with AMD started in 2009 and since than we have been
working closely together over the last years.

9 Materiaalweg 4, 5681 RJ Best, The Netherlands

u' contact@topic.nl
+31 (0)499 33 69 79

* www.topicembedded.com m linkedin.com/company/topic-embedded-systems

