Eile Edit Search ‘\\

v & v \ A = Q
Symbols Documents fi Powered by TOPIC ’

v [stepl < T

M 38 antl main(int argc, char argv)

39 @g({
fir 40 stereo* input_buffer = new stereo[BLOCKSIZE];
fich 41 stereo* output_buffer = new stereo[BLOCKSIZE];
fir_coefsh 92
43 t the exe table that rea t MF ir
fir_main.cop 44 f_pipe_input open_input_process(MP3_INPUT_COMMAND);
45 int f_desc_input fileno(f_pipe_input);
46
47 tart the (1 the a t |
48 f_pipe_output = open_output_process(AUDIO_OUTPUT_COMMAND);
49 int f_desc_ouput fileno(f_pipe_output);
50
51 while (true)
52 @ {
53 r 1 es f to the aque
54 ssize_t bytes_read = read(f_desc_input, input_buffer, BLOCI
55 if (bytes_read <= 0)
56 o {
57 if (bytes_read =)
58 break;
59 perror():
60 return 1;
61 r }
62 const unsigned int count (unsigned int)bytes read / size
63 for (unsigned int i ; 1 < count; ++1)
64 [{
65 fir(output_buffer + i, input_buffer + 1i);
- 66 | }
D"'k van den Heuvel I Produ t manager 67 ssize t bytes written = write(f_desc_ouput, output buffer,
68 if (bytes_written < bytes_read)
69 o {
70 if (bytes_written >= 0)
71 break;
72 perror(H
73 return 1;
74 F }
75 |)
76
77 if (f_pipe_output != NULL)
[SEUCEsh-4.3# cd /Desktop/dyp orkshop/workshop_stepl
sh-4.3# ./sw_fir J]
Compiler
Messages

Scribble

Terminal

line: 1/ 85 col: 0 sel: 0 INS SP mode: Unix (LF) encoding: UTF-8 filetype: C++ scope: uni

2021 | WHITE PAPER

CONTENTS et e s e e e e e e e e eseaeeeaees
L. INErOdUCTION ittt
2. Bridging the CPU-FPGA integration gap
3. Dynamic Process Loader (DYPlo®) ...cccueeiieiiieeieieee e
3.1 Dyplo® Network-on-Chip......ccccueeeciiiciiecieecee e
3.2 LINUX AFIVET ettt et
3.3 FUNCEION INTEGIrator.....eviiiiiii it
4. Programming eXampleccoceeeeeiiieiciiiee e
LN 1Y/ o] (o LT Vot o] o PO U

About TOPIC Embedded SyStemsS.......ccveeeiverieerieeieesieesee e

YAAY

(
| gaen

O 07360 |
\ .

E

2 J8 e
[TERET
e T

The world of computing is becoming more and more heterogeneous. Processing platforms
integrate with an increasing pace varieties of processing units integrated into single System On
Chips (SOCs), (embedded) PCs and combinations of edge and cloud computing. Within this context,
you see a shift in programming methods, a broad range of software abstractions and a focus on
coding efficiency like “low-coding”. An interesting question to this development is how to program
the different processing architectures with a common and effective software approach? For multi-
core processor architectures, a wide variety of compiler solutions are already available. However,
when you look at heterogeneous accelerator platforms, which combine GPUs, FPGAs and neural
networks with multi-core CPUs, the programming method needs specific programming skills.

This white paper addresses the programming of FPGA fabric in a software development perspective
and explains a method to develop and integrate FPGA functionality in a typical software
development context without requiring significant FPGA experience.

t

The main difference between a CPU and FPGA is that a CPU executes instructions on a predefined
logic silicon structure, whereas on an FPGA the logic structures also need to be designed. However,
everything executed on the FPGA is running in parallel, thereby boosting performance significantly.
This also means that the programming abstraction level of the FPGA is lower compared to a CPU.
The use of FPGA devices is therefore mostly focused on high-speed signal processing, video
applications, communication interfaces, blockchain algorithms and other compute-intensive
applications with regular constructs. To program FPGA devices, the use of a specific programming
language like VHDL and Verilog are required. In addition, the use of IP libraries and OpenCL type
of kernels can simplify the effort required - yet low-level FPGA design know-how remains crucial.

Over the years, significant energy has been put into creating compilers for FPGA implementations
using C or C++ as the preferred programming language, for example Xilinx High Level Synthesis
(HLS). Here a CPU compiler builds functionality on top of an existing fixed processor architecture,
and an FPGA compiler must also compile the logic structure. Currently the technology is mature
and while the logic densities of FPGA devices are very high, a bit of logic inefficiency for such
technologies is acceptable.

2021 | WHITE PAPER FPGA-centric software acceleration made easy

3. Dynamic Process Loader (Dyplo®)

The challenge that remains is that after the compilation of the FPGA functionality, this resulting
functionality still needs to be integrated with the processing system. On both a System-on-Chip
(SOC) as well as on a PC/FPGA combination, data needs to be exchanged between the two
processing entities. Typically specialist expertise is required at this stage: writing of Linux kernel
drivers, construction of proper DMA based data exchange mechanisms, additions of high-
performance FPGA interfaces according to strict bus protocols, etc. — effectively here is where
multiple programming disciplines meet. TOPIC recognized this problem years ago and developed a
Dynamic Process LOader (Dyplo®) that solves this problem elegantly on the FPGA side, Dyplo® forms
a Network-on-Chip (NOC), wrapping fixed and dynamically exchangeable FPGA function blocks.
On the processor side, Dyplo® is a Linux kernel driver that interfaces with the Dyplo® NOC using file
I/0 based data streams. The third aspect of Dyplo® is the implementation flow to transform a
software defined function block into a Dyplo® wrapped FPGA function block.

In this paper, the focus will be on the integration of FPGA logic with a PC system using PCI-Express
as the interface medium. However, the design process and functionality are identical to SOC type
of implementations or in a cloud context. The examples mentioned are implemented using a
standard Intel i7 based PC system running Ubuntu 18.04LTS and incorporating a Xilinx Alveo U50
FPGA accelerator card with a 16 lanes PCl-Express 3.0 bus.

The Dyplo® concept is based on streaming data transport. The FPGA communication infrastructure
is loosely based on Kahn Processing Networks (KPN). This means that nodes (accelerator regions)
are interacting via buffers, which synchronize operation between nodes and match computational
performance of the system with the available communication bandwidth. In the software
application, the data to and from the FPGA are accessible as file streams. You need to open them,
read from or write to, and then close them. The streams are presented as standard Linux file streams
with a clear reference.

£ XILINX. FPGA

node #1 node #2 node #3 node #4 node #5

e eer ser user er User Software Application
function function function function funetion
F(1) H2) F(3) F(4) F(5)

DMA node Dyplo® drivers
EXPRESS
ARMAMBA

m Network-on-Chip infrastructure

VO node #1 VO node #2 node #6 node #7 CPU node

P protocol user user NOC
i interface fun(cti)on fun(ctl)on management 8 —d
Fe K7
System memory

rotocol
nterface

|

Figure 1 — Dyplo® conceptual architecture

N

2021 | WHITE PAPER FPGA-centric software acceleration made easy

3.1 Dyplo® Network-on-Chip
Figure 1 gives a conceptual architecture illustration of the Dyplo® NOC from a system perspective.
Using single to multiple parallel DMA data streams, data can flow between the PC and FPGA fabric.
The processors volatile system background memory is used for the data exchange. The Dyplo®
infrastructure directly interacts with this background memory with limited processor involvement.
Of note is that using Linux, the observed responsiveness and latency is much better then when
using Microsoft Windows as an operating system.

The NOC is constructed as a ring topology with a configurable bandwidth. The default data width
of the ring is 64 bits. In multiples of 64 bits, the ring performance can be increased. The clock rate
of the ring is dependent on the FPGA fabric technology and the device speed grade. Clock rates of
over 300MHz are possible. Each node in the NOC is connected to this ring with maximum of 4
input and 4 output streams. There are five types of nodes that interact with this communication
infrastructure.

Node type Description

DMA nodes Reserved for data exchange between CPU and FPGA fabric

I/0 nodes Intended for direct data exchange between Dyplo® nodes and non-Dyplo®
functionality on the FPGA.

Fixed nodes User-defined/programmed functionality that resides permanently in the
NOC. This functionality is always available.

Reconfigurable nodes User-defined/programmed functionality that can be dynamically exchanged

in the NOC with different functions. This node has no function, unless the
software application programs the node with a partial bitstream

CPU node Reserved node for managing the NOC behavior and synchronization with
the software system

Routing the inputs and outputs of nodes with other nodes or the CPU system is controlled by the
application software. Setting-up a route is a simple addressing mechanism, stating from which node
(1 to 32) and which output (1 to 4) to which node (1 to 32) and which input the data should flow.
These routes are flexible and can be changed on-the-fly by software commands.

3.2 Linux driver

The Linux driver for Dyplo® creates a software abstraction of the NOC interfaces and loading of the
reconfigurable nodes. The Linux driver allows multiple applications to share the same Dyplo®
infrastructure. The arbitration of modifying routes and node functionality is controlled by Dyplo®.
If an application tries to allocate a specific already occupied node, the driver will return an error
flag. The same is valid for programmed routes.

The Dyplo® driver builds on top of standard Linux drivers for memory and DMA control as well as
PCI Express drivers. For proper handling of the parallel data streams and specifics of Dyplo® an
additional driver layer is created around these drivers. Using these drivers, the DMA data exchange
channels are available for the user as file streams.

2021 | WHITE PAPER FPGA-centric software acceleration made easy

3.3 Function integrator

A third part of Dyplo® is the tool, the Dyplo® Development Environment (DDE), to create and manage the
partial bitstreams of the FPGA. A GUI is available for interactive configuration, compilation and bitstream
management. In addition, scripted and command line driven operation is supported. The tool helps to
configure the NOC FPGA IP in a comprehensive manner, guides the import and creation of function blocks
from C/C++ and HDL and it creates automatically the corresponding partial bitstreams for the compiled
baseline FPGA image. Figure 2 gives an impression of the DDE user interface.

file Flow Tools Help

GeREl®EZ W

TO Pic Design Flow

EMBEDDED PRODUCTS

73 Dyplo

File Flow Tools Help Design Fiow |

GawHiEZ@@E 2 W Overview
A Step 1: 0S Configuration
a@ The first step in the Dyplo design process is the integration of the Dyplo Linux kemel driver in your kernel distribution, Instaling this driver will make your
T (: . f the pr f £ i
o Pl FPGA Image Configuration Linux kernel aware o the FPGA IP block in ¥ map of the pr
EMBEDDED PRODUCTS B
" -/ ¢, Step 2: FPGA Image Configuration
[Backplane | + 1/0 Nodes [+ CPU Nodes | + Fixed Nodes [| o stetc image | Cre Duing dean FPGA with the folowing
@ Instantiation of the processor subsystem
Vivado project @ The required interfaces between the FPGA fabric and the processor subsystem

@ Instantiation of the Dyplo FPGA IP block
® Configuration of the Dyplo FPGA IP block

:
Step 3: Application Development
\ all about: 0 appications which ly GA mapped functionality. In this step the configured
Qo Generate FPGA Image | | 0% and amp ‘you can taior according to your own functional
e requrements.

Waming: before generating the framework make sure all connections are made in tf

o Next

_|[Eile Flow Tools Help
FeB|=@ @ e 2 6

A
TO P I C Dyplo Development Environme’

EMBEDDED PRODUCTS

Welcome to the Dyplo Development Environment

The Dyplo Development Environment guides you through
the process of configuring the Dyplo infrastructure and
generates a FPGA design template for developing your

own application. The intention of this tool s to help you to
E‘ NewProject set up the design environment with user specific
functionality.

Figure 2 — Example screenshots of the Dyplo® Development Environment

2021 | WHITE PAPER FPGA-centric software acceleration made easy

4. Programming example

The question remaining is, how does an actual design flow workout in practice? In the following
paragraphs, a description is given of a typical design flow using the Dyplo® acceleration framework
based on a desktop PC solution with an Alveo U50 board. However, the exact same design flow is
applicable if you want to execute this in a cloud configuration at e.g. Nimbix or Amazon, or if you
are working on a system with a Zyng 7000 device or a Zynq Ultrascale+ device.

4.1 Installation

This particular Dyplo® workflow is explained using the Dyplo® Development Kit. The kit consists of
an Alveo U50 board, the Dyplo® Development Environment (DDE) and an illustrative example
application. In addition, a PC running Linux (e.g. Ubuntu 18.04LTS) with an available 8 lanes PCI-
Express 3.0 slot is required. Make sure that GCC is installed on the machine in addition to a Xilinx
Vivado/Vitis installation, preferably version 2020.2 or later. Install the Dyplo® Linux driver by simply
running the Dyplo® installer which is part of the DDE. The required Dyplo® specific PCI-Express
driver is automatically installed and you will notice that a number of file I/O devices are created as
standard Linux peripherals.

Alveo U50

User
application(s)

Function
node #n

Libdyplo (API)

1/0 node High-bandwidth interfaces
#m e.g. (Q)SFP+, FireFly

PCle

Dyplo driver l
High-bandwidth memory

DDR4 memory HBM2

Figure 3 — Demo image configuration Dyplo® Development Kit

4.2 NOC configuration

The second step is to configure the Dyplo® NOC on the FPGA, according to the needs of your
application. You basically partition the large FPGA into smaller partitions with well defined, easy to
use streaming interfaces. This configuration process is guided using an interactive GUI, launching
scripts that result in a complete FPGA project and bit image for the Alveo U50 board. The
development kit also comes with a pre-configured NOC wrapping 8 reconfigurable nodes and 4

1 A

2021 | WHITE PAPER FPGA-centric software acceleration made easy

DMA nodes. Figure 3 illustrates the functionality of this reference configuration. This means you
can have 4 parallel streams to the FPGA fabric as well as 4 back into the PC. The full PCI-Express
bandwidth is available, providing more than 500Mbyte/sec bandwidth per channel when equally
divided over the 4 DMA channels, matching performance requirements of 4Kp60 video
applications.

4.3 Function implementation

This is where the user specific functionality comes in. Dyplo® supports two implementation flows.
The first implementation flow is based on the traditional FPGA design flow, but strongly simplified.
The interfaces of the HDL node shall be AXI4-Stream compatible. A template design with test bench
are provided. The code can be hand-crafted, can be created using functions from Xilinx standard IP
catalog, can be constructed using Simulink HDL coder or bought from a third party.

= Manipulate code

= Remove software optimizations

= Introduce concurrency - O
= Create streaming architecture [SCRel Tl

Code

Profiling Analyses

Localize performance bottleneck
Detect processing loops
= Analyze algorithmic constructs

Compilation Data Type
& Synthesis Conversion

Vivado™ HLS
=3
' rectives / = Convert from floating point
Constraints
i ey
WS T /

to fixed point
= Saturation, over/underflow
= Rounding/truncation
= Error analyses

Pipelining

= Concurrency
Latency
Resource mapping

Figure 4 — Typical iterative implementation cycle of FPGA accelerator functions

The second implementation flow uses Xilinx high level synthesis technology (HLS). In the application
code, the part of which the performance needs to be accelerated, has to be isolated and interfaced
according to the Dyplo® API requirements. This is very similar to the way file I/O functionality is
handled in Linux. Using the Dyplo® GUI the provided code is automatically wrapped for compliance
with the NOC interfaces. In the same pass, a Vivado HLS project is created for this particular function
with the default settings. By opening the Vivado HLS GUI, the function can be further optimized to
meet specific processing performance requirements. All features offered by Vivado HLS are
supported, including a selection of OpenCL and OpenCV operators. A typical design cycle to get
from a “software” function to an FPGA accelerated equivalent is illustrated in figure 4.

Both implementation flows result in partial bit streams for the particular function that can be
deployed on any of the 8 reconfigurable nodes. The reference design comes with a number of

- N

2021 | WHITE PAPER FPGA-centric software acceleration made easy

standard video manipulation functions, provided as C/C++ code, HDL code and as partial
bitstreams.

In the previous step, a function was isolated from the application software for acceleration. To
replace the software function by the Dyplo® accelerated FPGA variant, the application needs to
meet the Dyplo® programming model requirements. It is very similar to file I/O operations:

Start the driver. By default, the NOC on the FPGA is in a passive state. It needs to be
initialized using a specific command.
Configure the routing of streams within the NOC:

o From the software application to one of the nodes (maximum 4 streams)

o From the nodes back to the software application (maximum 4 streams)

o Between the nodes in the NOC on the FPGA (each node has maximum 4 input

streams and 4 output streams)

The result of this operation are file-type pointers that can be used by software in the
applications
The file pointers can be activated using standard file operators as “open” and “close”.
When opened, you can read and write these streams at will. Operations on theses streams
are blocking in such a way that data stops flowing when a consuming data process is not
able to keep-up. This prevents data loss and synchronization issues. If dropping of data is
required, this must be implemented explicitly by the programmer. Implicitly, Dyplo © is loss-
less. You can keep on pushing data to the nodes in the FPGA, until the driver blocks.
The final operation to get the application using the accelerator in the fabric is the actual
programming of the node with a partial bitstream. This is done by a simple programming
command, referencing the node number and the partial bitstream file. Successful
programming is flagged by the return value. A node can already be occupied by a different
application as Dyplo® allows multiple applications to use the same NOC.

Although the programming model is inspired on file /O, the combination with the NOC
configuration has similarities with a specific OpenCL programming construct. Therefore, the use of
FPGA devices in a software context using Dyplo® is of a comparable complexity as developing CUDA
or OpenCL applications for GPU accelerator boards.

2021 | WHITE PAPER

= e x
Prowct Buid Tooks Help
x KO- 8

< Moketie

PP
B- @
Symoos o

becpp X [fth % [tn_costs h X f_man cop

int main(int argc, char **argy)
toreo” fror = new stereo(BLOCKSIZE]
700 [BLOCKSIZE | ;

output_butfer =

hat reads the NP3 file as inpi
,,,... nput. process (NP3 INPUT_CONMAND) ;
nol? pipe-input

oipe imput
nt f_desc_input = file

OUTPUT_COMMAND)

uﬂew output_process (AU

/pipe.output.
in (1 pipe_output):

¥_Gesc_ouput

while (tr
coc Ele EG1 Sewch View Document Broject Buki Tools belp

= G- 58

won B B X

41, Symbols | Documents X hardwre.hpp %
perre B hsinciudetplo | 172
rotod ' »

hawarerop || 78
5 7
« mancp 7
rare 7

main. cpp

>umu taskNar
String fullTaskvase < mnm

std

const i, m
for (u” 5

dyplo: Wardwareconfiy firkodes(hardvare,

on £PGA

Saize. g 79 Progran "fir_task® task
3o 80 firNode3. disableNod:
81 harduare . progran(filenane.c_str());
82 FirNode3. enableNode()

perrd 8

retur 8
)

(
i
bre

harduare. setPrograntode(false) ;

110429, T 2 s

92 f_to_hw_fir.addRouteTo(
93 f_from_hw_tir.add

read:

95 start t
96 f_pipe_input
f_pipe_output

ot 0

s 0

161 the processin
size t bytes.read

Staree damc_dac[280)
104 read a few sample
byces.read = Ireamsnnn gat, 3, 128,

¥ to e 14 o wfxlhs:mv dat, bytes_read);

168 tor oa
mue feren)

mpl n the mp
tread(sanp.dat,

bytes.read

ite them to the
_to_hw_tir.write(samp_dat
7. tron.hu_ fAr.read(samp dat

end thea to the

dyplo: -NardwareFifo |f_to_hw_fir (hardware.opeakifol
9 dyplo: :MardwareFifo f_from_hw_fir(hardware.openFifo(C

3. gethodelndex(
outetron(Firode.geckodeTndek());

atabl, §
open_input_process(MP3_INPUT_CONMAND)
open_output_process(AUDIO_OUTPUT_COMMAND)

sizeof (*sanp_dat)
Dresrewd);

bytes. read);

Nase;

maincpp- Deskiopyplowol

e Findpartition(ol Taskuase.c_str(), 3

)

WRONLY))
0_RDONLY));

f_pipe_input)

78

FPGA-centric software acceleration made easy

Ble Edit

-

Symboks Documents

Status.

Messages
Scabbie
Temnal

hne: 1/85

Search View Rocument roject

T stop1 5

Buld Tools Help

‘ - oy 7 ¥
i & x %S H M Q > B

cop X [lch X W_costsh X fe_mancpp X |Makefie

ar 3

3800 inc masncant arge, char *argv)

el

H € butfer = new stereo[8LOCKSIZE]

@ | Stereor ovtpui burfer = mew stereo(SLOCKSIZE]

b

44| pipe.inpur = apen.snput Brocess (w3, 1PUT. CommAND)

45 | nk FGesc input = Faleno? pipe. input)

Tpipe. GutpuT = 0pen OULPUT PrOcAss(AUDIO OUTPUT CONNAND)

desc_ouput = fileno(f_pipe_output)

while (true)
€

Snput bufar. BLoCKSIZE *

read sasples from the pipe and wr
ssize t bytes_read = read(f_desc_input, sizeof(stereo));
if (bytes_read <= 0)
if (bytes_read == 0) // €OF
broak;
perror)
return

const unsigned int count = (unsigned int)bytes read / sizeof(stereo)
for (unsigned int 1 1 < count; ++1)

fir(output_buffer input_buffer + 1);

35ize_¢ bytes_ritten = write(f_desc_ouput, output_buffer, bytes_read);
17 {hytes written < Bytos. rend)
£f (bytes_written >= 0) // Eof
break
perror()
Faturn
AF (¢ _pipe output 1= wuLL ;
30 swO0 INS 5P mode UNx(F) ewodng UTES fleype Cro _scope:unkromn

Figure 5 — Common software IDE tools are used to create Dyplo® compatible application software

2021 | WHITE PAPER FPGA-centric software acceleration made easy

In the previous chapters, the Dyplo® concept and programming method is explained. However,
the best way to learn about the concept is to try it. Dyplo® is available for Zyng 7000, Zynq
Ultrascale+ and Alveo. Via the Xilinx App Store and the licensing using Accelize technology, the
Dyplo Development and Runtime Environment can be sourced. However, the best way to
experience the Dyplo® benefits is using the Dyplo® Development Kit.

A
TOPIC e wwene PARTIAL RECONFIGURATION DEMO

nnnnnnnnnnnnnnnn

Figure 6 — A Qt-based example application running 2 applications simultaneously in the NOC

TOPIC released recently Dyplo® 2.0, with improved NOC performance, extended devices support
for Alveo accelerator boards and 4K video support capabilities. Where the 1.x version of Dyplo®
focused on the disclosure of FPGA fabric for software development, the 2.0 version of Dyplo® is
unlocking the performance and integration capabilities of the FPGA fabric and seamlessly
integrating this within Dyplo®. Able to maintain the threading type of processing infrastructure
based dynamic function exchange (DFX, formerly known as partial reconfiguration), the data
communication infrastructure is further enhanced to support natively multi-4K video streams, make
the DMA-based software-in-the-loop via DDR memory an integral part of the system, and allows
seamless integration of high-bandwidth-memory (HBM) in the data path as well as connecting
multiple FPGA devices to each other using high bandwidth, error-free connection links. As a Dyplo®
2.0 introduction offer, the Dyplo® Development Kit is offered including a Xilinx Alveo U50 board.

Unleash superior accelerated algorithmic performance on FPGAs now by testing Dyplo® yourself.
Use either a SOC or PC based system and experience with GPU programming convenience and
reduced power consumption the benefits of such a flow.

About TOPIC Embedded Systems

“We make the world a little better, healthier and smarter every day”. Our mission statement reflects
exactly what we do: developing innovative systems for our customers. The way we do that, is by
combining our customers domain specific know-how with our expertise in hardware and software
development. This results in the most optimal product for our customers. TOPIC has a strong
background of more than 25 years in developing systems, which can contain embedded-,
application- and cloud software, FPGA code and PCB designs. We help customers in different
domains such as medical, imaging, machine control & safety.

With over 150 employees, we are a strong and established company with our headquarters in Best,
the Netherlands. TOPIC has an I1SO13485 (medical) certified Quality Management System and
adopted the Agile way-of-working for optimal interaction with the customer.

Premier Alliance Partnership with Xilinx | TOPIC is one of the few Xilinx Premier Alliance Partners
in the world and the only one in the Benelux. Our partnership with Xilinx started in 2008 and since
than we have been working closely together for decades.

9 Materiaalweg 4, 5681 RJ Best, the Netherlands

D +31 (0)499 336979 m info@TOPIC.nl

\
ﬁ www.TOPIC.nl m linkedin.com/company/TOPIC-embedded-systems

mailto:info@topic.nl
http://www.topic.nl/

