
Topic Linux Distribution
Release 2020.2

Niek van Agt, Marc Brakels, Gijs Van Esch, Mike Looijmans

Jun 16, 2021

CONTENTS:

1 What is the TLD? 2
1.1 TOPIC boards and development kits . 2

1.1.1 Support . 3
1.2 Release notes . 3

1.2.1 2020.2.1 (2020-06-03) . 3
1.2.2 2020.2.0 (2020-04-01) . 3
1.2.3 Known issues . 3

2 Get Started 4
2.1 Set-up development machine . 4

2.1.1 Setup static state cache (optional) . 4
2.2 Build an image . 5
2.3 Create a bootable SD card . 5

2.3.1 Using a wic image . 5
2.3.2 Manually partitioning . 6

2.4 Boot an image . 6

3 How to . . . 8
3.1 Use peripherals . 8

3.1.1 LEDs . 8
3.1.2 EEPROM . 8
3.1.3 RTC (Real Time Clock) . 8
3.1.4 Ethernet . 9
3.1.5 Display . 9
3.1.6 WiFi . 9
3.1.7 Bluetooth . 10

3.2 Use SWUpdate . 10
3.2.1 Update scheme . 11
3.2.2 Persistent files . 11

3.3 Create your own Vitis app . 12
3.3.1 Standalone (bare-metal) application . 12
3.3.2 Linux application . 12

3.4 Create and use an SDK . 12
3.5 Use a custom FPGA image . 12

4 FPGA technical reference designs (TRDs) 15
4.1 Generate and build Vivado project . 15

4.1.1 Instructions for Ubuntu . 15
4.1.2 Instructions for Windows 10 . 16

4.2 Export Hardware (for SW development) . 16

5 Version control 17

6 Appendix A - Topic boards 21
6.1 TDKZ . 21

i

6.1.1 Memory . 21
6.1.2 Boot switches: . 21
6.1.3 Devicetree file . 21

6.2 TDKZU . 21
6.2.1 Memory . 22
6.2.2 Boot switches . 22
6.2.3 Devicetree file . 22

6.3 TDPZU . 22
6.3.1 Memory . 22
6.3.2 Boot switches . 22
6.3.3 Devicetree file . 23

6.4 URP . 23
6.4.1 Memory . 23
6.4.2 Boot switches . 23
6.4.3 Devicetree file . 23

7 Appendix B - Meta layers 24
7.1 meta-topic layer . 24
7.2 meta-topic-platform layer . 24
7.3 meta-topic-desktop layer . 24

ii

Topic Linux Distribution, Release 2020.2

This is the documentation for the TLD (TOPIC Linux Distribution). It describes what it is and how to work with
it.

CONTENTS: 1

CHAPTER

ONE

WHAT IS THE TLD?

TLD stands for TOPIC Linux Distribution. This embedded Linux distribution can be used to build Linux images
for TOPIC boards and development kits. The TLD uses Xilinx’ PetaLinux as a base and adds BSP’s and supporting
scripts for these kits.

The TLD is developed for customers to be able to create prototyping images for TOPIC boards. These images can
be used to run proof-of-concepts and other tests on our boards. A simple ‘hello world’ example is added to the
TLD to make it easy for a customer to add a custom application. When prototyping is done these images can be
fine-tuned in terms of size/functionality and security to make it a perfect fit for the eventual application.

In the Get Started chapter the different aspects of creating a (custom) image and developing/debugging it will be
treated and explained in more detail with examples.

1.1 TOPIC boards and development kits

TOPIC developed a complete family of System on Modules (SoM) and carrier boards for them. The SoM’s
are called Miami’s and the carrier boards are called Florida’s. To create prototyping platforms, TOPIC created
development kits by combining SoM’s and carrier boards. These development kits are all supported by the TLD.
The BSP’s for these kits are added to the distribution through the meta-TOPIC Yocto layer. See the table below
for the available boards/kits.

Abbr. Description Miami / Florida types
TD-
KZL

TOPIC Development Kit Zynq-7000
Lite

Miami Lite SoM on a Florida GEN carrier

TDKZ TOPIC Development Kit Zynq-7000 Miami SoM on a Florida GEN carrier
TD-
KZU

TOPIC Development Kit Zynq-
Ultrascale

Miami MPSoC SoM on a Florida GEN carrier

TD-
PZU

TOPIC Development kit Plus Zynq-
Ultrascale

Miami MPSoC Plus SoM on a Florida Plus carrier

URP UAV and Robotics Platform Zynq-Ultrascale 7EV based board suitable for Robotics
applications.

For more (detailed) information about the boards and the meta-TOPIC layer, see Appendix A - Topic boards.

2

Topic Linux Distribution, Release 2020.2

1.1.1 Support

If something is missing in the documentation or issues pop up, feel free to contact TOPIC: sup-
port@topicproducts.com

1.2 Release notes

1.2.1 2020.2.1 (2020-06-03)

Changes:

• Added support for all TOPIC boards

• Fixed QSPI flash driver of Zynq-7000 devices

• Add part about ‘version control’ to documentation

1.2.2 2020.2.0 (2020-04-01)

This is the first release of the TLD based on petalinux 2020.2. It only supported the TDPZU board.

1.2.3 Known issues

1.2. Release notes 3

mailto:support@topicproducts.com
mailto:support@topicproducts.com

CHAPTER

TWO

GET STARTED

2.1 Set-up development machine

The TLD is based on Xilinx’ Petalinux. Therefore, first of all Petalinux 2020.2 must be installed on the develop-
ment PC. For guidance on installing Petalinux, we refer to chapter 2 of the Petalinux user guide ug1144. Please
note we only support 2020.2.

Note: The development PC must be installed with Ubuntu 18.04 LTS.

Note: Make sure you have at least 50 GB free disk space.

Note: Don’t forget to configure the terminal to not use dash by running: sudo dpkg-reconfigure dash.
Choose ‘No’ when asked for.

The TLD comes with several .bsp files. These are the Board Support Package files that can be loaded into Petal-
inux to have a kick-start for creating an image for this board. These BSP files can be downloaded from down-
loads.topic.nl

Now Petalinux is installed and the right BSP file(s) are downloaded, the development PC is correctly configured
and ready to use.

2.1.1 Setup static state cache (optional)

Static state cache holds results from previous compile jobs. This way it prevents the need to rebuild everthing,
everytime. By default some static state cache is provide by Xilinx. But you can setup your own.

The build will look for ${HOME}/.bitbake-site.conf. You will need to create this file. A content example
is given below. Configuring at least SSTATE_DIR and DL_DIR already saves a lot of time.

• SSTATE_DIR is path to your local static state cache.

• DL_DIR is path to your local download cache.

Re-use the build server's hard labour
SSTATE_MIRRORS = "\

file://.* http://static-state-cache-server.local/share/sstate/PATH \n \
"

SOURCE_MIRROR_URL = "http://static-state-cache-server.local/sources/"

Cache on local machine
SSTATE_DIR = "${HOME}/workspace/bitbake_cache/sstate-cache"
DL_DIR = "${HOME}/workspace/bitbake_cache/downloads"

4

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2020-2.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1144-petalinux-tools-reference-guide.pdf
http://downloads.topic.nl/trd.html
http://downloads.topic.nl/trd.html

Topic Linux Distribution, Release 2020.2

For more info on static state cache check yocto manual.

2.2 Build an image

The following steps describe how to build an image for one of the TOPIC development kits.

Note: The assumption is that the PC is configured correctly during the Set-up development machine step.

1. Source petalinux:

source /tools/petalinux/2020.2/settings.sh

2. Create petalinux project/workspace from BSP (.bsp file):

petalinux-create -t project -s BSP_FILE -n PROJECTNAME

3. Build the image:

petalinux-build -c "petalinux-image-minimal-swu-sd"

This can take upto a couple of hours to build. Having a machine with many cores speeds up the build
a lot. For your reference an AMD Ryzen 9 3900X with 100 MBps internet connection takes about 30
minutes.

When the build is finished the build results will be available in build/tmp/deploy/images/
${TDK} where ${TDK} is the development kit name (ex: tdkzu)

Note: Setup a static state cache can speed up the build a lot. See Setup static state cache (optional)

Note: Sometimes the build fails on a failed download. This can be fixed/worked around by re-running
the petalinux-build command.

2.3 Create a bootable SD card

There are several ways to copy the build results to an SD card. Below, 2 ways are described

2.3.1 Using a wic image

The easiest way to create a bootable SD card is to take a WIC image and write it to the SD card using the dd
command. A tool like bmap-tool or balena-etcher can also be used. For dd, first find out what the cardreader
device is (plugin the device and run dmesg command). Then run the following command, replacing /dev/sdX
with the actual device name and TDK with the development kit name (ex: tdkzu):

sudo dd if=build/tmp/deploy/images/${TDK}/petalinux-image-minimal-${TDK}.wic of=/
→˓dev/sdX bs=1M

Note: The SD card needs not be formatted for this. When the board boots, it will automatically resize and create
the partitions.

2.2. Build an image 5

https://www.yoctoproject.org/docs/2.0/ref-manual/ref-manual.html#shared-state

Topic Linux Distribution, Release 2020.2

2.3.2 Manually partitioning

Alternatively, you can manually partition the SD card. For example you could use a graphical tool like
gnome-disks.

1. Partition and format the SD card as follows:

• boot: 128 MB FAT

• sd-rootfs-a: 40% ext4

• sd-rootfs-b: 40% ext4

• data: remaning ext4

Also mark sd-rootfs-a as bootable

2. From the results directory, copy boot.bin to the boot partition

3. Extract the rootfs archive to the sd-rootfs-a partition by running: tar -xf
petalinux-image-minimal-${TDK}.tar.gz --directory=/media/${USER}/
sd-rootfs-a/

4. Safely unmount the SD card (using the umount command or via the filemanager) to make sure everthing is
written to the SD card before removing it.

2.4 Boot an image

The several boards can boot from different sources. Supported boot media (per board) are:

• SD (all boards)

• QSPI (all boards)

• eMMC (not present on Zynq-7000 devices)

Boot switches on the board select the boot source. See section Appendix A - Topic boards. for the right boot switch
setings. That page also describes where the UART interface can be found.

Open a serial connection to the board at baudrate 115200, no parity, no flow control. For example using picocom:
picocom -b 115200 /dev/ttyUSB0

Power the board, the serial output will look like this:

Xilinx Zynq MP First Stage Boot Loader
Release 2020.2 Mar 24 2021 - 11:21:49
PMU Firmware 2020.2 Mar 24 2021 11:21:38
PMU_ROM Version: xpbr-v8.1.0-0
NOTICE: ATF running on XCZU9EG/silicon v4/RTL5.1 at 0xfffea000
NOTICE: BL31: v2.2(release):xilinx_rebase_v2.2_2020.2
NOTICE: BL31: Built : 11:19:30, Mar 24 2021

U-Boot 2020.01 (Mar 24 2021 - 11:21:11 +0000)Topic Miami MPSoC Plus

Within a minute the terminal should give a prompt (hostname varies based on ${TDK}:

Connected to SWUpdate via /run/swupdateprog
random: crng init done
random: 4 urandom warning(s) missed due to ratelimiting
OK

root@tld-peta-tdpzu9:~#

To check that the board is operational type a command like uptime:

2.4. Boot an image 6

Topic Linux Distribution, Release 2020.2

root@tld-peta-tdpzu9:~# uptime
12:51:24 up 2 min, load average: 0.00, 0.00, 0.00

2.4. Boot an image 7

CHAPTER

THREE

HOW TO . . .

3.1 Use peripherals

3.1.1 LEDs

The TDK’s all have 1 or more general purpose LEDs. They are registered (via the devicetree) to the Linux OS as
LED devices. Device files for them are created at /sys/devices/platform/<group-label>/leds/
<label> For example to turn on a LED run the following command (replace the labels with the actual values):

echo 1 > /sys/class/leds/<label>/brightness

3.1.2 EEPROM

The TDK’s all have a I2C EEPROM memory device that can (partly) be used by the user. The first part of this
memory is used by TOPIC for production data as serial numbers and MAC address

To find the EEPROM device run the following ‘search’ command on target:

find /sys/bus/nvmem -name nvmem

The search result is the path to the EEPROM device

To view its content:

hexdump -C <path_to_eeprom_device>

To write something to it:

echo "Hello World" > <path_to_eeprom_device>

3.1.3 RTC (Real Time Clock)

To configure the RTC, first sync time with internet once using ntpd

echo "server 2.nl.pool.ntp.org" >> /etc/ntp.conf
echo "server 1.us.pool.ntp.org" >> /etc/ntp.conf
ntpd -d -n -q

The output should be something like:

ntpd: '2.nl.pool.ntp.org' is 149.210.142.45
ntpd: '1.us.pool.ntp.org' is 64.142.54.12
ntpd: sending query to 64.142.54.12
ntpd: sending query to 149.210.142.45
ntpd: reply from 149.210.142.45: offset:+54013.704436 delay:0.007460 status:0x24
→˓strat:2 refid:0xca4f43c1 rootdelay:0.001831 reach:0x01 (continues on next page)

8

Topic Linux Distribution, Release 2020.2

(continued from previous page)

ntpd: reply from 64.142.54.12: offset:+54013.700510 delay:0.151523 status:0x24
→˓strat:3 refid:0x4c4037ce rootdelay:0.089906 reach:0x01
ntpd: sending query to 149.210.142.45
ntpd: reply from 149.210.142.45: offset:+54013.704544 delay:0.008119 status:0x24
→˓strat:2 refid:0xca4f43c1 rootdelay:0.001831 reach:0x03
ntpd: setting time to 2021-03-30 09:08:45.282092 (offset +54013.704544s)

To sync the HW clock with the system clock run the following:

hwclock -w

After executing the above commands, the system clock should stay intact after a reboot.

3.1.4 Ethernet

Wired ethernet is supported on the TDKZ(U) and TDPZU boards. This interface is registered as the eth0 interface.
This can be displayed/configured using the ifconfig command:

ifconfig eth0
eth0 Link encap:Ethernet HWaddr 02:12:78:AB:95:12

inet addr:192.168.80.81 Bcast:192.168.80.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1311 errors:0 dropped:0 overruns:0 frame:0
TX packets:593 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:127745 (124.7 KiB) TX bytes:627085 (612.3 KiB)
Interrupt:13

A command like ping can be used to test the connection:

ping -c 1 google.com

3.1.5 Display

On most of the TDKs a display interface is present as a HDMI output. This display is present as a linux framebuffer
device in /dev/fbX where X is a sequential number starting at 0.

When running the desktop-image, the framebuffer device is used by that desktop. When running with the minimal-
image, the framebuffer can be ‘tested’ by running:

cat /dev/urandom > /dev/fbX

3.1.6 WiFi

WiFi is supported on the XDPZU board. To check/configure it run:

ifconfig wlan0
wlan0 Link encap:Ethernet HWaddr C0:EE:40:61:9F:58

inet6 addr: fe80::c2ee:40ff:fe61:9f58/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:54 errors:0 dropped:0 overruns:0 frame:0
TX packets:17 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:6164 (6.0 KiB) TX bytes:3501 (3.4 KiB)

3.1. Use peripherals 9

Topic Linux Distribution, Release 2020.2

When running the desktop-image the GUI can configure the WiFi network.

When running with the minimal-image a connection to a WiFi network can be made using a wpa supplicant file.
This file is located (or should be created) at /etc/wpa_supplicant.conf and can be ‘filled’ by using the
following command:

wpa_passkey MY-SSID MY-PASSWORD >> /etc/wpa_supplicant.conf

Change the contents of the file to look like the following:

ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=0
update_config=1
network={

ssid="SSID-of-network"
psk="Password-of-network"

}

Replacing SSID-of-network and Password-of-network with the SSID and password of the network
you are connecting to.

3.1.7 Bluetooth

Bluetooth is supported on the XDPZU board.

Scan for bluetooth devices using bluetoothctl. Running bluetoothctl will open a bluetooth console.

In that console, run the following commands:

power on
scan on
discoverable on

Now the device should show up, type devices in bluetooth console to show a list

devices
Device 7D:51:A8:F6:3B:9A 7D-51-A8-F6-3B-9A
Device 0C:43:10:1D:B5:43 0C-43-10-1D-B5-43
Device 1D:46:AA:40:F6:DC 1D-46-AA-40-F6-DC
Device 47:A6:EB:66:2E:D3 47-A6-EB-66-2E-D3
Device 00:D1:EB:ED:86:CF 00-D1-EB-ED-86-CF

3.2 Use SWUpdate

SWUpdate is a software package for embedded Linux systems to update the contents of non-volatile memories
holding the software components like a bootloader, kernel and rootfs.

The SWUpdate service can be reached in several ways but the most convenient way is via a network connection.
The board runs a webserver hosting a webpage. Use a browser or program like curl to upload a software update
package file (.swu) through this webpage. This .swu file contains the new software and also the location of where
it should go and other meta-data.

There are several ways to update a board using SWUpdate:

• SWUpdate webpage:

Can be reached by typing its hostname/IP-address + a port number into a browser. The port-
number defaults to 8080. This requires a network connection (ethernet, USB or WiFi). Example
URL: http://192.168.100.1:8080

3.2. Use SWUpdate 10

http://192.168.100.1:8080

Topic Linux Distribution, Release 2020.2

• USB (memory device): On the desktop images, an USB stick with a .swu file on it can be inserterd. This
will then be automativally installed.

• Command line: Execute the following command on the target device: swupdate -v -i
<path_to_swu_file>. This is particularly useful to debug issues with an SWU file.

• SWUpdate API: SWUpdate also comes with an API to control it.

For more information check the SWUpdate website.

3.2.1 Update scheme

Most setups use an A/B update scheme. There are two copies of the whole filesystem present, called A and B.
When the system is running from A, the update process will write the new image to the B partition. On success, the
system will mark B as bootable and reboot. This makes the upgrade almost atomic, a failure during the upgrade
will have no effects on the running system.

By default, for SD/eMMC we use A/B scheme for all devices using 4 partitions:

• boot Hold the FSBL/u-boot

• x-rootfs-a and x-rootfs-b Where x is either sd or emmc These partitions are the ones being up-
dated by SWUpdate. Either a or b is the ‘active’ partition.

• data General data partition. Can be used to hold persistent data, SWUpdate will not touch this partition.
By default it is empty.

The following will happen when providing a new SWUpdate package for eMMC.

1. The non-active will be mounted (lets say B)

2. SWUpdate writes the Update to non-active partition

3. Copy peristent files from A to B (see Persistent files)

4. SWUpdate moves the bootable flag from A to B

5. SWUpdate triggers a reboot

6. The boot loader will detect bootable flag is now on B, and will use that one to boot from.

When there is not enough space on the media for two copies, a single update scheme can be used. This allows an
atomic update only by booting from another device, for example one can upgrade the QSPI while running from
eMMC. When running from QSPI, it is still possible to upgrade the image in QSPI but failure during the upgrade
will result in the system being unable to boot. In this case the user will have to manually repair this, for example
by booting from an SD card instead.

The following configs use a single scheme instead:

• XDP with QSPI

• TDKZ with QSPI

3.2.2 Persistent files

Some files can be left untouched when updating the board’s software with SWUpdate, like for example the WiFi
configuration.

See for full list: meta-topic-platform/recipes-support/swupdate/swupdate/
swu-transfer-list

After writing the new copy of the filesystem, the upgrade process will copy the files in this list (if they exist) to
the newly installed copy. At the moment, this is not available on QSPI using ubifs.

3.2. Use SWUpdate 11

https://sbabic.github.io/swupdate/

Topic Linux Distribution, Release 2020.2

3.3 Create your own Vitis app

Xilinx’ Vitis SDK can be used to create applications for the TOPIC boards. To create a platform project, import
the .XSA file generated by Vivado. Check FPGA technical reference designs (TRDs) for more information about
this .XSA file.

3.3.1 Standalone (bare-metal) application

For the steps on how to create a standalone application with the Vitis SDK we refer to the
Vitis documentation - Standalone

3.3.2 Linux application

For the steps on how to create a Linux application with the Vitis SDK we refer to the
Vitis documentation - Linux

3.4 Create and use an SDK

In order to generate the SDK in the petalinux project folder run

petalinux-build --sdk

This command will create a sdk.sh script in the folder images/linux.

To create the SDK, run the petalinux-package command:

petalinux-package --sysroot -s images/linux/sdk.sh

This will create an sdk folder in images/linux which contains the SDK. This directory can also be changed by
passing the -d or –dir flag to the petalinux-package command.

For more information on how to use the SDK, see the UG1144 Petalinx Reference Guide.

3.5 Use a custom FPGA image

By default the TLD will fetch a prebuild FPGA image from downloads.topic.nl The following steps describe how
to use a custom build FPGA image.

1. Create your Vivado project (it is recommended to use the TRD as a starting point, see FPGA technical
reference designs (TRDs).)

Note: The TLD 2020.2 release only supports the use of Vivado 2020.2.

2. Build your FPGA image

3. Export the build results: choose File -> Export -> Export hardware (Use default settings in wizard)
This exports a .xsa file which is needed in the next step.

4. Import the results into the petalinux project by running the following command in the petalinux workspace:

petalinux-config --silentconfig --get-hw-description ${XSA_FILE}

5. Generate new device tree based on new FPGA image (by default the TLD does not do this, as it is not reliable)

3.3. Create your own Vitis app 12

https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/creatingastandaloneappproject.html
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/creatingalinuxappproject.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1144-petalinux-tools-reference-guide.pdf#_OPENTOPIC_TOC_PROCESSING_d103e21545

Topic Linux Distribution, Release 2020.2

Enable the devicetree generation by running the following command: petalinux-config
In the menu change the following:

• DTG Settings -> DEselect “Remove PL from devicetree”

• Save the configuration -> default location

• Exit the menu

6. Rebuild the design Clean the project (sometimes old build results are not cleaned automaticaly) and then
rebuild:

rm -rf components/ build/
petalinux-build -c device-tree -x do_compile

Now petalinux has generated a device tree based on the new FPGA image. Unfortunately this can not be used as
is but it can be used as a starting point / reference.

1. Create a new device tree file at project-spec/meta-user/recipes-bsp/device-tree/dtb-example-custom.bb
An example of the contents of this file is shown below:

SUMMARY = "Devicetree overlay for FPGA image"
require ../../../topic-platform/meta-topic/recipes-bsp/device-tree/dtb-
→˓overlay.inc

COMPATIBLE_MACHINE = ".*"

BITSTREAM = "fpga-image-example-custom"

2. Create a new folder to hold the new devicetree files: project-spec/meta-user/
recipes-bsp/device-tree/dtb-example-custom/

3. Copy the device tree from the reference design to

project-spec/meta-user/recipes-bsp/device-tree/dtb-example-custom/
pl.dts

Check Appendix A - Topic boards for the location of the reference device tree file of your board.

4. Update the reference device tree with the new components.

The auto generated version is located here:
components/plnx_workspace/device-tree/device-tree/pl.dtsi

It is recommended to only copy/overwrite the changed parts into the new device tree
project-spec/meta-user/recipes-bsp/device-tree/dtb-example-custom/
pl.dts

5. Disable the device tree generation again by running the following command: petalinux-config

In the menu do the following:

• DTG Settings -> select “Remove PL from devicetree”

• Save the configuration -> default location

• Exit the menu

The device tree part is done now.
The next steps show how to generate a recipe for the new FPGA image. This to include the FPGA
image into the build.

6. Create a new folder project-spec/meta-user/recipes-bsp/fpga and create a new file in there: fpga-image-example-custom.bb.
An example of the content is shown below. Change the ${FPGA_BITFILE} variable with the

3.5. Use a custom FPGA image 13

Topic Linux Distribution, Release 2020.2

correct filename.

SUMMARY = "FPGA image"
require recipes-bsp/fpga/fpga-image.inc
LICENSE = "CLOSED"

COMPATIBLE_MACHINE = ".*"

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

PV = "1"
FPGA_BITFILE = "fpga-image-example-custom.bit"

BOARD_DESIGN_NAME = "fpga-image-example-custom"
BOARD_DESIGN_URI = "file://${FPGA_BITFILE}"

PKGV = "${PV}"
S = "${WORKDIR}/${BOARD_DESIGN_PATH}"
B = "${S}"

Nothing to build
do_compile() {

cp ${FPGA_BITFILE} fpga.bit
}

7. Copy the .bit file to project-spec/meta-user/recipes-bsp/fpga/fpga-image-example-custom/
Make sure to use the same filename as provided in the recipe ${FPGA_BITFILE}. The recipe
created in the previous step will pick up the .bit file and copy it into the build.

8. Update the project-spec/meta-user/recipes-core/images/user-config.inc to include new FPGA image.
Do this by adding the name of the new recipe to the IMAGE_INSTALL_append list and adding the
original dtb recipe to the IMAGE_INSTALL_remove list. See example below:

IMAGE_INSTALL_append = " \
dtb-example-custom \

"

IMAGE_INSTALL_remove = "dtb-miami-florida-gen-reference"

login by default
inherit autologin

9. Now we can build again and the new FPGA image will be built and included into the image:

petalinux-build

3.5. Use a custom FPGA image 14

CHAPTER

FOUR

FPGA TECHNICAL REFERENCE DESIGNS (TRDS)

Topic provides FPGA technical reference designs (TRD) for its boards. These reference designs can be found here

Note: When building the XDPZU design, additional licenses are required to build the design.

4.1 Generate and build Vivado project

The TRDs are provided as a .zip file. To build the TRD first unzip it. The .zip file contains a shell file (.sh) and
a batch file (.bat) so it can be run on either a Linux or a Windows machine. The instructions on how to build for
both OSses are below.

4.1.1 Instructions for Ubuntu

1. Open a terminal window

2. Step into the unzipped TRD directory

cd ${TRD_DIR}

3. Source Vivado’s settings script so that Vivado can be run from the terminal (path to installation directory
might vary)

source /opt/Xilinx/Vivado/2020.2/settings64.sh

4. Set the FPGA_FAMILY environment variable to match the right FPGA (ex: xczu9eg). Tip: Run the
next step (generate_bitstream.sh) without setting the FPGA_FAMILY variable to see the value op-
tions.

export FPGA_FAMILY=xczu9eg

5. Run the shell script to generate and build the TRD

./generate_bitstream.sh

This will generate a directory with the FPGA name and the TRD will be created in that directory.

15

http://downloads.topic.nl/trd.html

Topic Linux Distribution, Release 2020.2

4.1.2 Instructions for Windows 10

1. Open a command prompt

2. Step into the unzipped TRD directory

cd %TRD_DIR%

3. Execute Vivado’s settings64.bat so that Vivado can be run from the command prompt (path to installation
directory might vary).

C:\Xilinx\Vivado\2020.2\.settings64-Vivado.bat

4. Set the FPGA_FAMILY environment variable to match the right FPGA family (ex: xczu9eg). Tip:
Run the next step (generate_bitstream.bat) without setting the FPGA_FAMILY variable to see the
value options.

set FPGA_FAMILY=xczu9eg

5. Generate the bitstream

generate_bitstream.bat

This will generate a directory with the FPGA name and the TRD will be created in that directory.

4.2 Export Hardware (for SW development)

After the FPGA build is finished, an .xsa file has been automatically generated in the TRD directory. This file can
be imported into Vitis to Create your own Vitis app for the board.

4.2. Export Hardware (for SW development) 16

CHAPTER

FIVE

VERSION CONTROL

This chapter describes the preferred way to do version control with the TLD, using a GIT repository. This allows
for a future update to a new version of the TLD and facilitates support (from TOPIC).

The flow below downloads the BSP file from a remote source. This removes the need to commit the BSP file into
the repository.

Note: When ${company_name} is shown below, replace it with your company name, so for exapmle topic.
The same goes for ${product_name}.

Follow the steps below to create a new petalinux project from a BSP file.

1. Create an empty directory with the following name ${company_name}-${product_name}-platform and step into it.

mkdir ${company_name}-${product_name}-platform
cd ${company_name}-${product_name}-platform

2. Add the following folders: config, meta-${product_name}, scripts.

mkdir config meta-${product_name} scripts

Note: In this example we only create one meta-layer, within the git repo. Meta-layers are often added
as git submodules from external sources, like meta-qt5 for example.

3. Initialize a GIT repository by running:

git init

4. Add a .gitignore file and as ‘starting point’ fill it with the lines below:

${product_name}
data

5. Create the config for a new meta layer in meta-${product_name}/conf/layer.conf. Again a ‘starting point’ for the content is given below:

Add the layer to the ``BBPATH``
Prepend (=.) to make sure it looks for .inc files in this layer first
BBPATH =. "${LAYERDIR}:"

Add the directories that contain recipes to ``BBFILES``
BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \

${LAYERDIR}/recipes-*/*/*.bbappend"

BBFILE_COLLECTIONS += "meta-${product_name}"

(continues on next page)

17

Topic Linux Distribution, Release 2020.2

(continued from previous page)

BBFILE_PATTERN_meta-${product_name} = "^${LAYERDIR}/"
BBFILE_PRIORITY_meta-${product_name} = "7"
LAYERSERIES_COMPAT_meta-${product_name} = "zeus"
LAYERDEPENDS_meta-${product_name} = "topic-platform-layer"

6. Create the user config file in meta-${product_name}/recipes-core/images/
user-config.inc

Add packages that need to be installed into the image. See the example below which adds python
and enables the autologin feature:

IMAGE_INSTALL_append = " \
python3 \

"

login by default
inherit autologin

7. Create a shell script to set up the environment to start the build in. Create scripts/setup.sh
with the example content below. Update the paths depending on your setup and make sure you add
execution permissions to the script (chmod +x scripts/setup.sh).

#!/bin/sh -e
DOWNLOAD_DIR='data'
BSP_NAME="minimal-tdkzu9-default-2020.2-35c45d4.bsp"
REMOTE_BSP_URI="http://${DATA_SERVER}/downloads/tld/${BSP_NAME}"
REMOTE_XSA_URI='http://${DATA_SERVER}/downloads/fpga/fpga-image-${company_
→˓name}-${product_name}/fpga-image-${company_name}-${product_name}-
→˓9dacc9776efe8c0e3ea5114b3157ddbe51a4f30c.tar.xz'
LOCAL_BSP_PATH="${DOWNLOAD_DIR}/${BSP_NAME}"
LOCAL_XSA_PATH="${DOWNLOAD_DIR}/rel/${product_name}.xsa"
PETA_PROJECT_NAME='${product_name}'

note ()
{

echo -e "\033[32mNOTE: $1\033[39m"
}

warning ()
{

echo -e "\033[33mWARNING: $1\033[39m"
}

error ()
{

echo -e "\033[31mERROR: $1\033[39m"
}

if [! -e "${LOCAL_BSP_PATH}"]; then
warning "Downloading bsp from ${REMOTE_BSP_URI}"
wget -q -O "${LOCAL_BSP_PATH}" ${REMOTE_BSP_URI}

fi

if [! -e "${LOCAL_XSA_PATH}"]; then
warning "Downloading xsa from ${REMOTE_XSA_URI}"
wget -q -O "/tmp/downloaded.xsa.xz" ${REMOTE_XSA_URI}
tar -xf "/tmp/downloaded.xsa.xz" --directory=${DOWNLOAD_DIR}

fi

note "Removing old petalinux project if exists in ${PETA_PROJECT_NAME}/"

(continues on next page)

18

Topic Linux Distribution, Release 2020.2

(continued from previous page)

rm -rf ${PETA_PROJECT_NAME}

if [! -e "${LOCAL_BSP_PATH}"]; then
error "BSP doesn't exist ${LOCAL_BSP_PATH}"
return

fi
if [! -e "${LOCAL_XSA_PATH}"]; then

error "xsa doesn't exist ${LOCAL_XSA_PATH}"
return

fi

note "Create petalinux project in ${PETA_PROJECT_NAME}/"
petalinux-create \

--type project \
--name ${PETA_PROJECT_NAME} \
--source ${LOCAL_BSP_PATH}

cd ${PETA_PROJECT_NAME}
note "Update with latest XSA file"
petalinux-config --silentconfig --get-hw-description ../${LOCAL_XSA_PATH}

note "Update with user config"
if [-e "../config/config"]; then

cp ../config/config project-spec/configs/
else

warning "File config/config doesn't exist, will use config from
→˓BSP file."
fi

if [-e "../config/rootfs_config"]; then
cp ../config/rootfs_config project-spec/configs/

else
warning "File config/rootfs_config doesn't exist, will use config

→˓from BSP file."
fi

petalinux-config --silentconfig
note "Setup of petalinux project completed."

8. Create a shell script that will automate the build. Create scripts/autobuild.sh and fill it with
the example content below. Also make sure to add execution permissions to the script (chmod +X
scripts/setup.sh).

#!/bin/sh -e
./scripts/setup.sh
cd ${product_name}
petalinux-build -c "petalinux-image-minimal-swu-emmc"
mkdir -p ../results
cp build/tmp/deploy/images/*/petalinux-image-minimal-*.wic.xz ../results/.
cp build/tmp/deploy/images/*/petalinux-image-minimal-swu-emmc-*.swu ../
→˓results/.

9. Run the setup script (making sure petalinux is sourced).

source <petalinux_install_dir>/settings.sh
./scripts/setup.sh

This creates the petalinux project. The config files from this project need to be checked in into the GIT
repository.

10. Copy the config files to the GIT repository:

19

Topic Linux Distribution, Release 2020.2

cp ${product_name}/project-spec/configs/config config/
cp ${product_name}/project-spec/configs/rootfs_config config/

11. Open config/config and scroll to the end of the file. Add the new user (meta) layer to the
CONFIG_USER_LAYER_x variables. It should look like the example contents below:

#
User Layers
#
CONFIG_USER_LAYER_0="${proot}/../meta-${product_name}"
CONFIG_USER_LAYER_1="${proot}/project-spec/meta-user"
CONFIG_USER_LAYER_2="${proot}/project-spec/meta-swupdate"
CONFIG_USER_LAYER_3="${proot}/project-spec/meta-topic"
CONFIG_USER_LAYER_4="${proot}/project-spec/meta-topic-platform"
CONFIG_USER_LAYER_5="${proot}/project-spec/meta-xilinx-standalone"
CONFIG_USER_LAYER_6="${proot}/project-spec/meta-rust"
CONFIG_USER_LAYER_7="${proot}/project-spec/meta-dyplo"
CONFIG_USER_LAYER_8=""

12. Now the project is ready to be built, by running:

./scripts/autobuild.sh

20

CHAPTER

SIX

APPENDIX A - TOPIC BOARDS

6.1 TDKZ

The TDKZ is the Topic Development Kit Zynq-7000 which consists of a Miami Zynq on a Florida GEN board.
The next table shows the available peripherals/interfaces and their default configuration.

6.1.1 Memory

Type Description Size Chip
DDR Micron Technology DDR3L DRAM 1 GB MT41K256M16TW-107 XIT
QSPI Micron Technology NOR flash 32 MB N25Q256A11E1240F
NAND Micron Technology 2Gb NAND (Optional) 256 MB MT29F2G16
EEPROM On Semiconductor secured eeprom 4Kb CAT24C04TDI-GT3

6.1.2 Boot switches:

Name S1 bootswitch positions
1 2 3 4 5 6 7 8

QSPI on off off on off on on off
SD card off on off on off on on off
JTAG on off on off off on on off

6.1.3 Devicetree file

The reference devicetree file of this board is located in the petalinux workspace (.bsp file): project-spec/
meta-topic/recipes-bsp/device-tree/dtb-miami-florida-gen-reference/
topic-miami/pl.dts

6.2 TDKZU

The TDKZU is the Topic Development Kit Zynq MPSoC which consists of a Miami MPSoC on a Florida GEN
board. The next table shows the available peripherals/interfaces and their default configuration.

21

Topic Linux Distribution, Release 2020.2

6.2.1 Memory

Type Description Size Chip
DDR Micron LPDDR4 2GB MT53E512M32D2NP-046 WT:E
QSPI Micron Technology NOR flash 64 MB MT25QU256ABA8E12-1SIT
eMMC SanDisk eMMC 8GB 8 GB SDINBDG4-8G-XI1
EEPROM On Semiconductor secured eeprom 4Kb CAT24C04TDI-GT3

6.2.2 Boot switches

Name S1 bootswitch positions
1 2 3 4 5 6

QSPI off on on off off on
SD-Card on off off on on off
eMMC on off on off off on

6.2.3 Devicetree file

The reference devicetree file of this board is located in the petalinux workspace (.bsp file): project-spec/
meta-topic/recipes-bsp/device-tree/dtb-miami-florida-gen-reference/
topic-miamimp/pl.dts

6.3 TDPZU

The TDPZU is the Topic Development Kit Zynq MPSoC Plus which consists of a Miami MPSoC Plus on a Florida
Plus board. The next table shows the available peripherals/interfaces and their default configuration.

6.3.1 Memory

Type Description Size Chip
DDR Micron Technology DDR4 DRAM 2-8 GB MT40A512M16JY-083E IT:B
QSPI Micron Technology NOR flash 64-256 MB MT25QU01GBBB8E12-0SIT
eMMC SanDisk eMMC 8GB 8 GB SDINBDG4-8G-XI1
EEPROM ST 32-Kbit I2C eeprom 32 Kb M24C32S-FCU

6.3.2 Boot switches

Name S1 bootswitch positions
1 2 3 4 5 6

QSPI on off on on x x
SD-Card off off on on x x
eMMC on off off on x x

6.3. TDPZU 22

Topic Linux Distribution, Release 2020.2

6.3.3 Devicetree file

The reference devicetree file of this board is located in the petalinux workspace (.bsp file): project-spec/
meta-topic/recipes-bsp/device-tree/dtb-tdpzu9-reference/pl.dts

6.4 URP

The URP is a Zynq-Ultrascale 7EV based board suitable for Robotics applications. The next table shows the
available peripherals/interfaces and their default configuration.

6.4.1 Memory

Type Description Size Chip
DDR Micron Technology DDR4 DRAM 4 GB MT40A512M16JY-083E IT:B
QSPI Micron Technology NOR flash 64 MB MT25QU256ABA8E12-1SIT
eMMC SanDisk eMMC 8GB 8 GB SDINBDG4-8G
EEPROM ST 32-Kbit I2C eeprom 32 Kb M24C32S-FCU

6.4.2 Boot switches

Name S1 bootswitch positions
1 2 3

QSPI on off on
SD card off on off
eMMC off off on

Only the first 3 switches are used to select the boot mode.

6.4.3 Devicetree file

The reference devicetree file of this board is located in the petalinux workspace (.bsp file): project-spec/
meta-topic/recipes-bsp/device-tree/dtb-xdp-reference/pl.dts

6.4. URP 23

CHAPTER

SEVEN

APPENDIX B - META LAYERS

7.1 meta-topic layer

7.2 meta-topic-platform layer

7.3 meta-topic-desktop layer

Last Updated on 2021-06-16

24

	What is the TLD?
	TOPIC boards and development kits
	Support

	Release notes
	2020.2.1 (2020-06-03)
	2020.2.0 (2020-04-01)
	Known issues

	Get Started
	Set-up development machine
	Setup static state cache (optional)

	Build an image
	Create a bootable SD card
	Using a wic image
	Manually partitioning

	Boot an image

	How to …
	Use peripherals
	LEDs
	EEPROM
	RTC (Real Time Clock)
	Ethernet
	Display
	WiFi
	Bluetooth

	Use SWUpdate
	Update scheme
	Persistent files

	Create your own Vitis app
	Standalone (bare-metal) application
	Linux application

	Create and use an SDK
	Use a custom FPGA image

	FPGA technical reference designs (TRDs)
	Generate and build Vivado project
	Instructions for Ubuntu
	Instructions for Windows 10

	Export Hardware (for SW development)

	Version control
	Appendix A - Topic boards
	TDKZ
	Memory
	Boot switches:
	Devicetree file

	TDKZU
	Memory
	Boot switches
	Devicetree file

	TDPZU
	Memory
	Boot switches
	Devicetree file

	URP
	Memory
	Boot switches
	Devicetree file

	Appendix B - Meta layers
	meta-topic layer
	meta-topic-platform layer
	meta-topic-desktop layer

